NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL CORANK

Let K be a field of characteristic zero, A be an integral domain over K with the field of fractions $R = \text{Frac}(A)$, and $\text{Der}_K A$ be the Lie algebra of all K-derivations on A. Let $W(A) := R\text{Der}_K A$ and L be a nilpotent subalgebra of rank n over R of the Lie algebra $W(A)$. We prove that if the center $Z = Z(L)$ is of rank $\geq n - 2$ over R and $F = F(L)$ is the field of constants for L in R, then the Lie algebra FL is contained in a locally nilpotent subalgebra of $W(A)$ of rank n over R with a natural basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie algebra $u_n(F)$, which was studied early by other authors.

Key words and phrases: derivation, vector field, Lie algebra, nilpotent algebra, integral domain.

INTRODUCTION

Let K be a field of characteristic zero, A be an integral domain over K, and $R = \text{Frac}(A)$ be its field of fractions. Recall that a K-derivation D on A is a K-linear operator on the vector space A satisfying the Leibniz rule $D(ab) = D(a)b + aD(b)$ for any $a, b \in A$. The set $\text{Der}_K A$ of all K-derivations on A is a Lie algebra over K with the Lie bracket $[D_1, D_2] = D_1D_2 - D_2D_1$. The Lie algebra $\text{Der}_K A$ can be isomorphically embedded into the Lie algebra $\text{Der}_K R$ (any derivation D on A can be uniquely extended on R by the rule $D(a/b) = (D(a)b - aD(b))/b^2$, $a, b \in A$). We denote by $W(A)$ the subalgebra $R\text{Der}_K A$ of the Lie algebra $\text{Der}_K R$ (note that $W(A)$ and $\text{Der}_K R$ are Lie algebras over the field K but not over R). Nevertheless, $W(A)$ and $\text{Der}_K R$ are vector spaces over the field R, so one can define the rank $\text{rk}_R L$ for any subalgebra L of the Lie algebra $W(A)$ by the rule $\text{rk}_R L = \dim_R L$. Every subalgebra L of the Lie algebra $W(A)$ determines its field of constants in R by

$$F = F(L) := \{ r \in R \mid D(r) = 0 \text{ for all } D \in L \}. $$

The product $FL = \{ \sum a_iD_i \mid a_i \in F, D_i \in L \}$ is a Lie algebra over the field F, this Lie algebra often has simpler structure than L itself (note that such an extension of the ground field preserves the main properties of L from the viewpoint of Lie theory).

We study nilpotent subalgebras $L \subseteq W(A)$ of rank $n \geq 3$ over R with the center $Z = Z(L)$ of rank $\geq n - 2$ over R, i.e. with the center of corank ≤ 2 over R. We prove that FL is contained

YAK 512.5
2010 Mathematics Subject Classification: Primary 17B66; Secondary 17B05, 13N15.
in a locally nilpotent subalgebra of $W(A)$ with a natural basis over R, similar to the standard basis of the triangular Lie algebra $U_n(F)$ (Theorem 1). As a consequence, we get an isomorphic embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra $u_n(F)$ over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent but not nilpotent.

We use standard notations. The ground field K is arbitrary of characteristic zero. If F is a subfield of a field R and $r_1, \ldots, r_k \in R$, then $F \langle r_1, \ldots, r_k \rangle$ is the set of all linear combinations of r_i with coefficients in F, it is a subspace in the F-space R, for an infinite set $\{r_1, \ldots, r_k, \ldots \}$ we use the notation $F \langle \{r_i\}_{i=1}^{\infty} \rangle$. The triangular subalgebra $u_n(K)$ of the Lie algebra $W_n(K) := \text{Der}_K K[x_1, \ldots, x_n]$ consists of all the derivations on $K[x_1, \ldots, x_n]$ of the form

$$D = f_1(x_2, \ldots, x_n) \frac{\partial}{\partial x_1} + \cdots + f_{n-1}(x_n) \frac{\partial}{\partial x_{n-1}} + f_n \frac{\partial}{\partial x_1},$$

where $f_i \in K[x_{i+1}, \ldots, x_n], f_n \in K$. If $D \in W(A)$, then $\text{Ker} D$ denotes the field of constants for D in R, i.e., $\text{Ker} D = \{r \in R \mid D(r) = 0\}$.

1 Main properties of nilpotent subalgebras of $W(A)$

We often use the next relations for derivations which are well known (see, for example [7]). Let $D_1, D_2 \in W(A)$ and $a, b \in R$. Then

1) $[aD_1, bD_2] = ab[D_1, D_2] + aD_1(b)D_2 - bD_2(a)D_1$;

2) if $a, b \in \text{Ker} D_1 \cap \text{Ker} D_2$, then $[aD_1, bD_2] = ab[D_1, D_2]$.

The next two lemmas contain some results about derivations and Lie algebras of derivations.

Lemma 1 ([6], Lemma 2). Let L be a subalgebra of the Lie algebra $\text{Der}_K R$ and F the field of constants for L in R. Then FL is a Lie algebra over F, and if L is abelian, nilpotent or solvable, then so is FL, respectively.

Lemma 2 ([6], Proposition 1). Let L be a nilpotent subalgebra of the Lie algebra $W(A)$ with $\text{rk}_R L < \infty$ and $F = F(L)$ the field of constants for L in R. Then

1) FL is finite dimensional over F;

2) if $\text{rk}_R L = 1$, then L is abelian and $\text{dim}_F FL = 1$;

3) if $\text{rk}_R L = 2$, then FL is either abelian with $\text{dim}_F FL = 2$ or FL is of the form

$$FL = F \left\langle D_2, D_1, aD_1, \ldots, \frac{a^k}{k!} D_1 \right\rangle,$$

for some $D_1, D_2 \in FL$ and $a \in R$ such that $[D_1, D_2] = 0$, $D_2(a) = 1$, $D_1(a) = 0$.

Lemma 3. Let \(L \) be a nilpotent subalgebra of the Lie algebra \(W(A) \) of rank \(n \) over \(R \) with the center \(Z = Z(L) \) of rank \(k \) over \(R \). Then \(I := RZ \cap L \) is an abelian ideal of \(L \) with \(\text{rk}_R I = k \).

Proof. By Lemma 4 from [6], \(I \) is an ideal of the Lie algebra \(L \). Let us show that \(I \) is abelian. Let us choose an arbitrary basis \(D_1, \ldots, D_k \) of the center \(Z \) over \(R \) (i.e., a maximal by inclusion linearly independent over \(R \) subset of \(Z \)). One can easy to see that \(D_1, \ldots, D_k \) is a basis of the ideal \(I \) as well, so we can write for each element \(D \in I \)

\[
D = a_1D_1 + \cdots + a_kD_k
\]

for some \(a_1, \ldots, a_k \in R \). Since \(D_j \in Z, \ j = 1, \ldots, k \), it holds

\[
[D_j, D] = [D_j, \sum_{i=1}^{k} a_iD_i] = \sum_{i=1}^{k} D_j(a_i)D_i = 0
\] \hspace{1cm} (1)

for \(j = 1, \ldots, k \). The derivations \(D_1, \ldots, D_n \) are linearly independent over the field \(R \), hence we obtain from (1) that \(D_j(a_i) = 0, i, j = 1, \ldots, k \). Therefore we have for each element \(\overline{D} = b_1D_1 + \cdots + b_kD_k \) of the ideal \(I \) the next equalities

\[
[D, \overline{D}] = \left[\sum_{i=1}^{k} a_iD_i, \sum_{j=1}^{k} b_jD_j \right] = \sum_{i,j=1}^{k} a_ib_j[D_i, D_j] = 0,
\]

since \(D_i(b_j) = D_j(a_i) = 0 \) as mentioned above. The latter means that \(I \) is an abelian ideal. Besides, obviously \(\text{rk}_R I = k \). \hfill \Box

Lemma 4. Let \(L \) be a nilpotent subalgebra of the Lie algebra \(W(A) \), \(Z = Z(L) \) the center of \(L \), \(I := RZ \cap L \) and \(F \) the field of constants for \(L \) in \(R \). If for some \(D \in L \) it holds \([D, F I] \subseteq F I \), \([D, F I] \neq 0 \), then there exist a basis \(D_1, \ldots, D_m \) of the ideal \(F I \) of the Lie algebra \(F L \) over \(R \) and \(a \in R \) such that \(D(a) = 1, \ D_i(a) = 0, \ i = 1, \ldots, m \). Besides, each element \(\overline{D} \in F I \) of the form \(\overline{D} = f_1(a)D_1 + \cdots + f_m(a)D_m \) for some polynomials \(f_i \in F_1[t] \), where \(F_1 \) is the field of constants for the subalgebra \(L_1 = F I + FD \) in \(R \).

Proof. By Lemma 3, the intersection \(I = RZ \cap L \) is an abelian ideal of the Lie algebra \(L \) and therefore \(F I \) is an abelian ideal of the Lie algebra \(F L \). Choose a basis \(D_1, \ldots, D_m \) of \(F I \) over the field \(R \) in such a way that \(D_1, \ldots, D_m \in Z \). Then \(FZ \) is the center of the Lie algebra \(F L \). Now take any basis \(T_1, \ldots, T_s \) of the \(F \)-space \(F I \) (note that the Lie algebra \(F I \) is finite dimensional over the field \(F \) by [6]). Every basis element \(T_i \) can be written in the form \(T_i = \sum_{j=1}^{m} r_{ij}D_j, \ i = 1, \ldots, s, \) for some \(r_{ij} \in R \). Denote by \(B \) the subring \(B = F[r_{ij}, i = 1, \ldots, s, j = 1, \ldots, m] \) of the field \(R \) generated by \(F \) and the elements \(r_{ij} \). Since the linear operator \(\text{ad} D \) is nilpotent on the \(F \)-space \(F I \) the derivation \(D \) is locally nilpotent on the ring \(B \). Indeed,

\[
[D, T_i] = [D, \sum_{j=1}^{m} r_{ij}D_j] = \sum_{j=1}^{m} D(r_{ij})D_j
\]

and therefore

\[
(\text{ad} D)^{k_i}(T_i) = \sum_{j=1}^{m} D^{k_i}(r_{ij})D_j = 0
\]
for some natural k_i, $i = 1, \ldots, s$. Denoting $\overline{k} = \max_{1 \leq t \leq s} k_t$, we get $D^\overline{k}(r_{ij}) = 0$ and therefore D is locally nilpotent on B. One can easily show that there exists an element $p \in B$ (a preslice) such that $D(p) \in \text{Ker} D$, $D(p) \neq 0$. Then denoting $a := p/D(p)$, we have $D(a) = 1$ (such an element a is called a slice for D). The ring B is contained in the localization $B[c^{-1}]$, where $c := D(p)$ and the derivation D is locally nilpotent on $B[c^{-1}]$. Note that $B[c^{-1}] \subseteq F_1$, where F_1 is the field of constants for $L_1 = FI + FD$ in R. Besides, by Principle 11 from [4] it holds $B[c^{-1}] = B_0[a]$, where B_0 is the kernel of D in $B[c^{-1}]$. This completes the proof because $B \subseteq B[c^{-1}]$ and every element D of the quotient algebra FI is of the form $D = b_1D_1 + \ldots + b_mD_m, b_i \in B$. \hfill \Box

Lemma 5. Let L be a nilpotent subalgebra of the Lie algebra $W(A)$, $Z = Z(L)$ the center of L, F the field of constants of L in R and $I = RZ \cap L$. Let $\text{rk}_R Z = n - 2$. Then the following statements for the Lie algebra FL/FI hold

1) if FL/FI is abelian, then $\dim_F FL/FI = 2$;

2) if FL/FI is nonabelian, then there exist elements $D_{n-1}, D_n \in FL, b \in R$ such that

$$FL/FI = F \left< D_{n-1} + FI, bD_{n-1} + FI, \ldots , \frac{b^k}{k!} D_{n-1} + FI, D_n + FI \right>$$

with $k \geq 1, D_n(b) = 1, D_{n-1}(b) = 0, D(b) = 0$ for all $D \in FL$.

Proof. Let us choose a basis D_1, \ldots, D_{n-2} of the center Z over the field R and any central ideal $FD_{n-1} + FI$ of the quotient algebra FL/FI. Denote the intersection $R(I + kD_{n-1}) \cap L$ by L_1. Then it is easy to see that FL_1 is an ideal of the Lie algebra FL of rank $n - 1$ over R and the Lie algebra FL/FI_1 is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary element $D_0 \in FL \setminus FI_1$. Then D_1, \ldots, D_n is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

$$FL/FI = F \left< D_{n-1} + FI, D_n + FI \right>.$$

Indeed, let us take any elements $S_1 + FI, S_2 + FI$ of FL/FI and write

$$S_1 = \sum_{i=1}^{n} r_i D_i, \quad S_2 = \sum_{i=1}^{n} s_i D_i, \quad r_i, s_i \in R, i, j = 1, \ldots, n.$$

From the equalities $[D_i, S_1] = [D_i, S_2] = 0, i = 1, \ldots, n - 2$ (recall that $D_i \in Z(L), i = 1, \ldots, n - 2$) it follows that

$$D_i(r_j) = D_i(s_j) = 0, i = 1, \ldots, n - 2, j = 1, \ldots, n.$$

(2)

Since $[FL, FI] \subseteq FI$ we have $[D_i, S_1], [D_i, S_2] \in FI$ for $i = n - 1, n$. Taking into account the equalities (2) we derive that

$$D_i(s_j) = D_i(r_j) = 0, i = n - 1, n, j = n - 1, n.$$

Therefore it holds $s_i, r_j \in F$ for $i = n - 1, n$ and the elements $D_{n-1} + FI, D_n + FI$ form a basis for the abelian Lie algebra FL/FI over the field F.

Case 2. FL/FI is nonabelian. Then $\dim_F FL/FI \geq 3$ because the Lie algebra FL/FI is nilpotent. Let us show that the ideal FI_1/FI of the Lie algebra FL/FI is abelian (recall that

...
\[I_1 = R(I + KD_{n-1}) \cap L. \] Since \(D_{n-1} + FI \) lies in the center of the quotient algebra \(FL/FI \) we have for any element \(rD_{n-1} + FI \) of the ideal \(FL/FI \) the following equality
\[
[D_{n-1} + FI, rD_{n-1} + FI] = FI.
\]

Hence \(D_{n-1}(r)D_{n-1} + FI = FI \). The last equality implies \(D_{n-1}(r) = 0 \). But then for any elements \(rD_{n-1} + FI, sD_{n-1} + FI \) of \(FL/FI \) we get
\[
[rD_{n-1} + FI, sD_{n-1} + FI] = [rD_{n-1}, sD_{n-1} + FI] = (D_{n-1}(s)r - sD_{n-1}(r))D_{n-1} + FI = FI.
\]

The latter means that \(FL/FI \) is an abelian ideal of \(FL/FI \).

Further, the nilpotent linear operator \(\text{ad}D_n \) acts on the linear space \(FL/FI \) with \(\ker(\text{ad}D_n) = FD_{n-1} + FI \). Indeed, let \(\text{ad}D_n(rD_{n-1} + FI) = FI \). Then \([D_n, rD_{n-1}] \in FI \) and therefore \(D_n(rD_{n-1}) \in FI \). This relation implies \(D_n(r) = 0 \) and taking into account the equalities \(D_i(r) = 0, i = 1, \ldots, n - 1 \), we get that \(r \in F \) and \(\ker(\text{ad}D_n) = FD_{n-1} + FI \). It follows from this relation that the linear operator \(\text{ad}D_n \) on \(FL/FI \) has only one Jordan chain and the Jordan basis can be chosen with the first element \(D_{n-1} + FI \). Since \(\dim FL/FI \geq 2 \) (recall that \(\dim FL/FI \geq 3 \)) the chain is of length \(\geq 2 \). Let us take the second element of the Jordan chain in the form \(bD_{n-1} + FI, b \in R \). Then \(\text{ad}D_n(bD_{n-1} + FI) = D_{n-1} + FI \) and hence \(D_n(b) = 1 \). The inclusion \([D_{n-1}, bD_{n-1}] \in FI \) implies the equality \(D_{n-1}(b) = 0 \), and analogously one can obtain \(D_i(b) = 0, i = 1, \ldots, n - 2 \).

If \(\dim FL/FI \geq 3 \) and \(cD_{n-1} + FI \) is the third element of the Jordan chain of \(\text{ad}D_n \), then repeating the above considerations we get \(D_n(c) = b \). Then the element \(\alpha = \frac{b^2}{2^2} - c \in R \) satisfies the relations \(D_{n-1}(\alpha) = D_n(\alpha) = 0 \) and \(D_i(\alpha) = 0, i = 1, \ldots, n - 2 \), since \(D_i(b) = D_i(c) = 0 \). Therefore, \(\alpha = \frac{b^2}{2^2} - c \in F \) and \(c = \frac{b^2}{2^2} + \alpha \). Since \(aD_{n-1} + FI \in \ker(\text{ad}D_n) \), we can take the third element of the Jordan chain in the form \(\frac{b^2}{2^2}D_{n-1} + FI \). Repeating the consideration one can build the needed basis of the Lie algebra \(FL/FI \).

Lemma 6. Let \(L \) be a nilpotent subalgebra of \(\mathcal{W}(A) \) with the center \(Z = Z(L) \) of \(R \). If \(F \) is the field of constants for \(L \) in \(R \) and \(I = RZ \cap L \). If \(S, T \) are elements of \(L \) such that \([S, T] \in I \), the rank of the subalgebra \(L_1 \) spanned by \(I, S, T \) equals \(n \) and \(C_{FL}(FI) = FI \), then there exist elements \(a,b \in R \) such that \(S(a) = T(a) = 0, S(b) = 0, T(b) = 1 \) and \(D(a) = D(b) = 0 \) for each \(D \in I \). Besides, every element \(D \in FI \) can be written in the form \(D = f_1(a,b)D_1 + \cdots + f_{n-2}(a,b)D_{n-2} \) with some polynomials \(f_i(u,v) \in F[u,v] \).

Proof. Let us choose a basis \(D_1, \ldots, D_{n-2} \) of \(Z \) over \(R \). By the lemma conditions, one can easily see that \(D_1, \ldots, D_{n-2}, S, T \) is a basis of \(L \) over \(R \). The ideal \(FI \) of the Lie algebra \(FL \) is abelian by Lemma 3 and \(\text{ad}S, \text{ad}T \) are commuting linear operators on the vector space \(FI \) (over \(F \)). Take a basis \(T_1, \ldots, T_s \) of \(F \) over \(F \) (recall that \(\dim_F FL < \infty \) by Theorem 1 from [6]) and write
\[
T_i = \sum_{j=1}^{n-2} r_{ij} D_j \text{ for some } r_{ij} \in R, i = 1, \ldots, s, j = 1, \ldots, n - 2.
\]
Denote by
\[
B = F[r_{ij}, i = 1, \ldots, s, j = 1, \ldots, n - 2],
\]
the subring of \(R \) generated by \(F \) and all the coefficients \(r_{ij} \). Then \(B \) is invariant under the derivations \(S \) and \(T \), these derivations are locally nilpotent on \(B \) and linearly independent over \(R \) (by
the condition $C_{FL}(FI) = FI$ of the lemma). By Lemma 4, there exists an element $a \in B[c^{-1}]$ such that

$$S(a) = 1, \quad D_i(a) = 0, \quad i = 1, \ldots, n - 2,$$

(here $c = S(p)$ for a preslice p for S in B). Since $c \in \ker S$ and $[S, T] = 0$ one can assume without loss of generality that $T(c) \in \ker T$. But then T is a locally nilpotent derivation on the subring $B[c^{-1}]$. Repeating these considerations we can find an element $b \in B[c^{-1}][d^{-1}]$ with $T(b) = 1$ (here d is a preslice for the derivation T in $B[c^{-1}]$). Denote $B_1 = B[c^{-1}, d^{-1}]$, the subring of R generated by B, c^{-1}, d^{-1}. Then using standard facts about locally nilpotent derivations (see, for example Principle 11 in [4]) one can show that $B_1 = B_0[a, b]$, where $B_0 = \ker S \cap \ker T$. Therefore every element h of B_1 can be written in the form $h = f(a, b)$ with $f(u, v) \in F[u, v]$. Note that

$$F = \ker T \cap \ker S \cap \bigcap_{i=1}^{n-2} \ker D_i.$$

It follows from this representation of elements of B_1 that every element of the ideal FI can be written in the form

$$D = f_1(a, b)D_1 + \cdots + f_{n-2}(a, b)D_{n-2}$$

with some polynomials $f_i(u, v) \in F[u, v]$.

\[\Box \]

2 \hspace{1em} THE MAIN RESULTS

Theorem 1. Let L be a nilpotent subalgebra of rank $n \geq 3$ over R from the Lie algebra $W(A)$, $Z = Z(L)$ the center of L with $\rk_R Z \geq n - 2$, F the field of constants of L in R. Then one of the following statements holds:

1) $\dim_F FL = n$ and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie algebra of dimension 3 and an abelian Lie algebra;

2) $\dim_F FL \geq n + 1$ and FL lies in one of the locally nilpotent subalgebras L_1, L_2 of $W(A)$ of rank n over R, which have a basis D_1, \ldots, D_n over R satisfying the relations $[D_i, D_j] = 0, \quad i, j = 1, \ldots, n$, and are one of the form

$$L_1 = F \left\langle \left\{ \frac{b^i}{i!} D_1 \right\}_{i=0}^{\infty}, \ldots, \left\{ \frac{b^i}{i!} D_{n-1} \right\}_{i=0}^{\infty}, D_n \right\rangle$$

for some $b \in R$ such that $D_i(b) = 0, \quad i = 1, \ldots, n - 1, \quad$ and $D_n(b) = 1,$

$$L_2 = F \left\langle \left\{ \frac{a^i b^j}{i! j!} D_1 \right\}_{i,j=0}^{\infty}, \ldots, \left\{ \frac{a^i b^j}{i! j!} D_{n-2} \right\}_{i,j=0}^{\infty}, \left\{ \frac{b^i}{i!} D_{n-1} \right\}_{i=0}^{\infty}, D_n \right\rangle$$

for some $a, b \in R$ such that $D_{n-1}(a) = 1, \quad D_n(a) = 0, \quad D_{n-1}(b) = 0, \quad D_n(b) = 1,$

$D_i(a) = D_i(b) = 0, \quad i = 1, \ldots, n - 2.$

Proof. By Lemma 3, $I = RZ \cap L$ is an abelian ideal of L and therefore FI is an abelian ideal of the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let $\dim_F FL = n$. It is obvious that $\dim_F M = \rk_R M$ for any subalgebra M of the Lie algebra FL, in particular $\dim_F FZ \geq n - 2$ because of conditions of the theorem. We may restrict ourselves only on
nonabelian algebras and assume $\dim_F FZ = n - 2$ (in case $\dim_F FZ \geq n - 1$ the Lie algebra FL is abelian). Since FL is nilpotent of nilpotency class 2, one can easily show that FL is a direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the condition 1) of the theorem. So, we may assume further that $\dim_F FL \geq n + 1$.

Case 1. $\text{rk}_R Z = n - 1$. Then FI is of codimension 1 in FL by Lemma 5 from [6]. Therefore $\dim_F FI \geq n$ because of $\dim_F FL \geq n + 1$ and $\dim_F FL/FI = 1$. We obtain the strong inclusion $FZ \subseteq FL$ because of $\dim_F FZ = n - 1$. Take a basis D_1, \ldots, D_{n-1} of Z over R and an element $D_n \in FL \setminus FI$. Then D_1, \ldots, D_n is a basis for FL over R and $[D_n, FI] \neq 0$. Using Lemma 4 one can easily show that FL is contained in a subalgebra of type L_1 from $W(A)$.

Case 2. $\text{rk}_R Z = n - 2$ and $\dim_F FI = n - 2$. Then $FI = FZ$, $\dim_F FL/FI \geq 3$ and therefore by Lemma 5 the quotient algebra FL/FI is of the form

$$FL/FI = F\left\langle \left\{ \frac{b^i}{i!} D_{n-1} + FI \right\}_{i=0}^k, D_n + FI \right\rangle$$

for some $k \geq 1$, $b \in R$ such that $D_n(b) = 1$, $D_{n-1}(b) = 0$ and $D(b) = 0$ for each $D \in FI$.

The F-space

$$J = F\left\langle \left\{ \frac{b^i}{i!} D_1 \right\}_{i=0}^\infty, \ldots, \left\{ \frac{b^i}{i!} D_{n-1} \right\}_{i=0}^\infty \right\rangle$$

is an abelian subalgebra of $W(A)$ and $[FL, J] \subseteq J$. Therefore the sum

$$J + F\left\langle \left\{ \frac{b^i}{i!} D_{n-1} \right\}_{i=0}^\infty, D_n \right\rangle$$

is a subalgebra of the Lie algebra $W(A)$. If $[D_n, D_{n-1}] \neq 0$, then taking into account the relation $[D_n, D_{n-1}] \in FI$ one can write

$$[D_n, D_{n-1}] = a_1 D_1 + \cdots + a_{n-2} D_{n-2}$$

for some $a_i \in F$ (recall that $FI = FZ$). Consider the element of $W(A)$ of the form

$$\tilde{D}_{n-1} = D_{n-1} - a_1 b D_1 - \cdots - a_{n-2} b D_{n-2}.$$

Since $[D_n, \tilde{D}_{n-1}] = 0$, $\tilde{D}_{n-1}(b) = 0$, one can replace the element D_{n-1} with the element \tilde{D}_{n-1} and assume without loss of generality that $[D_n, D_{n-1}] = 0$. As a result we get the Lie algebra of the type L_1 from the statement of the theorem.

Case 3. $\text{rk}_R Z = n - 2$ and $\dim_F FI > n - 2$. First, suppose $C_{FL}(FI) = FI$. Then by Lemma 6 there are a basis D_1, \ldots, D_{n-2} of the ideal FI over R and elements $a, b \in R$ such that

$$D_{n-1}(a) = 1, D_n(a) = 0, D_{n-1}(b) = 0, D_n(b) = 1$$

and

$$D_i(a) = D_i(b) = 0, i = 1, \ldots, n - 2,$$

and each element $D \in FI$ can be written in the form

$$D = f_1(a, b) D_1 + \cdots + f_{n-2}(a, b) D_{n-2}$$
for some polynomials \(f_i(u, v) \in F[u, v] \).

Consider the \(F \)-subspace

\[
J = F[a, b]D_1 + \cdots + F[a, b]D_{n-2}
\]

of the Lie algebra \(W(A) \). It is easy to see that \(J \) is an abelian subalgebra of \(W(A) \) and \([FL, J] \subseteq J\).

If \([D_n, D_{n-1}] = 0\), then it is obvious that the subalgebra \(FL + J \) is of type \(L_2 \) of the theorem and \(FL \subseteq L_1 \). Let \([D_n, D_{n-1}] \neq 0\).

Since \([D_n, D_{n-1}] \in FL\), it follows

\[
[D_n, D_{n-1}] = h_1(a, b)D_1 + \cdots + h_{n-2}D_{n-2}
\]

for some polynomials \(h_i(u, v) \in F[u, v] \).

Then the subalgebra \(J \) has such an element

\[
T = u_1(a, b)D_1 + \cdots + u_{n-2}(a, b)D_{n-2}
\]

that \(D_n(u_i(a, b)) = h_i(a, b), i = 1, \ldots, n - 2 \) (recall that \(D_n(a) = 0, D_n(b) = 1 \)), and hence the element \(\tilde{D}_{n-1} = D_{n-1} - T \) satisfies the equality \([D_n, T] = 0\).

Replacing \(D_{n-1} \) with \(\tilde{D}_{n-1} \) we get the needed basis of the Lie algebra \(FL + J \) and see that \(FL \) can be embedded into the Lie \(L_2 \) of \(W(A) \). So in case of \(C_{FL}(FL) = FL \) the Lie algebra \(FL \) can be isomorphically embedded into the Lie algebra of type \(L_2 \) from the statement of the theorem.

Further, suppose \(C_{FL}(FL) \neq FL \). Since \(C_{FL}(FL) \supseteq FL \) one can easily show that \(D_{n-1} \in C_{FL}(FL) \setminus FI \) (note that \(FL/FI \) has the unique minimal ideal \(FD_{n-1} + FI \)). Then \([D_{n-1}, FI] = 0\), and therefore \([D_n, FI] \neq 0\). Therefore by Lemma 4 there is an element \(c \in R \) such that

\[
D_n(c) = 1, D_{n-1}(c) = 0, D_i(c) = 0, i = 1, \ldots, n - 2.
\]

Moreover, each element of \(FI \) is of the form \(g_1(c)D_1 + \cdots + g_{n-2}(c)D_{n-2} \) for some polynomials \(g_i(u) \in F[u] \). By Lemma 5, the quotient algebra \(FL/FI \) is of the form

\[
FL/FI = F\left(\left\{ \frac{b^i}{i!}D_{n-1} + FI \right\}_{i=0}^{k}, D_n + FI \right)
\]

for some \(b \in R, k \geq 1 \) such that \(D_n(b) = 1, D_{n-1}(b) = 0 \). But then

\[
D_{n-1}(b - c) = 0, D_n(b - c) = 0, D_i(b - c) = 0,
\]

and hence \(b - c = \alpha \) for some \(\alpha \in F \). Without loss of generality we can assume \(b = c \). The locally nilpotent subalgebra

\[
L_1 = F\left(\left\{ \frac{a^i b^j}{i! j!}D_1 \right\}_{i, j=0}^{\infty}, \ldots, \left\{ \frac{a^i b^j}{i! j!}D_{n-2} \right\}_{i, j=0}^{\infty}, \left\{ \frac{b^i}{i!}D_{n-1} \right\}_{i=0}^{\infty}, D_n \right)
\]

of the Lie algebra \(W(A) \) contains \(FL \) and satisfies the conditions for the Lie algebra of type \(L_2 \) from the statement of the theorem, possibly except the condition \([D_n, D_{n-1}] = 0\).

If \([D_n, D_{n-1}] \neq 0\), then from the inclusion \([D_n, D_{n-1}] \in FI \) it follows that

\[
[D_n, D_{n-1}] = f_1(b)D_1 + \cdots + f_{n-2}(b)D_{n-2}
\]

for some polynomials \(f_i(u) \in F[u] \).

One can easily show that there is such an element

\[
\overline{D} = h_1(b)D_1 + \cdots + h_{n-2}(b)D_{n-2} \in L_1,
\]

that \([D_n, \overline{D}] = [D_n, D_{n-1}] \) (one can take antiderivations \(h_i \) for polynomials \(f_i, i = 1, \ldots, n - 2 \)). Replacing \(D_{n-1} \) with \(D_{n-1} - \overline{D} \) we get the needed basis over \(R \) of the Lie algebra \(L_2 \).
Remark 1. Any Lie algebra of dimension n over F can be realized as a Lie algebra of rank n over R by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let L be a nilpotent subalgebra of rank n over R of the Lie algebra $W(A)$, $Z = Z(L)$ be the center of L and F be the field of constants of L in R. If $\text{rk}_R Z \geq n - 2$, then the Lie algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie algebra $u_n(F)$.

Proof. First, suppose $\text{dim}_F FL = n$. If FL is abelian, then FL is isomorphically embeddable into the Lie algebra $u_n(F)$ because the subalgebra $F \langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle$ of $u_n(F)$ is abelian of dimension n over F. So one can assume that FL is nonabelian. Then by Theorem 1, $FL = M_1 \oplus M_2$, where M_1 is an abelian Lie algebra of dimension $n - 3$ over F and M_2 is nilpotent nonabelian with $\text{dim}_F M_2 = 3$. The subalgebra $H_2 = F \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} \rangle$ of the Lie algebra $u_n(F)$ is obviously isomorphic to M_2. The abelian subalgebra $H_1 = F \langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle$, $n \geq 4$, is isomorphic to the Lie algebra M_1. So $FL \simeq H_1 \oplus H_2$ is isomorphic to a subalgebra of $u_n(F)$. Note that $H_1 \oplus H_2$ is of rank n over the field $\mathbb{K}(x_1, \ldots, x_n)$ of rational functions in n variables.

Next, let $\text{dim}_F FL > n$. By Theorem 1, the Lie algebra FL lies in one of the subalgebras of types L_1 or L_2. Therefore it is sufficient to show that the subalgebras L_1, L_2 of $W(A)$ from Theorem 1 can be isomorphically embedded into the Lie algebra $u_n(F)$. In case L_1, we define a mapping φ on the basis D_1, \ldots, D_n, $\{\frac{\partial^i}{\partial x_i} D_i\}_1^\infty$ of L_1 over R by the rule $\varphi(D_i) = \frac{\partial}{\partial x_i}, i = 1, \ldots, n$, $\varphi(\frac{\partial^i}{\partial x_i} D_i) = \frac{x_i^i}{l!} \frac{\partial}{\partial x_i}, i = 1, \ldots, n - 1$, and then extend it on L_1 by linearity. One can easily see that the mapping φ is an isomorphic embedding of the Lie algebra L_1 into $u_n(F)$. Analogously, on L_2 we define a mapping $\psi : L_2 \to u_n(F)$ by the rule

$$
\psi(D_i) = \frac{\partial}{\partial x_i}, \quad i = 1, \ldots, n,
\psi(\frac{a^i b^j}{i! j!} D_k) = \frac{x_i^{i-1} x_j^j}{i! j!} \frac{\partial}{\partial x_k}, \quad k = 1, \ldots, n - 2
$$

$$
\psi(\frac{b^j}{i!} D_{n-1}) = \frac{x_i^i}{l!} \frac{\partial}{\partial x_{n-1}}, \quad i \geq 1, j \geq 1,
$$

and further by linearity. Then ψ is an isomorphic embedding of the Lie algebra L_2 into the Lie algebra $u_n(F)$.

References

Received 01.03.2020

Нехай K — поле характеристики нуль, A — область цілісності над K з полем часток $R = Frac(A)$, і $Der_K A$ — алгебра Лі K-диференціювань A. Нехай $W(A) := RDer_K A$ і L — нільпотентна підальгебра рангу n над R Лі алгебри $W(A)$. Ми показуємо, що якщо центр $Z = Z(L)$ має ранг $\geq n - 2$ над R і $F = F(L)$ — поле констант алгебри Лі L в R, то алгебра Лі FL міститься в локально нільпотентній підальгебрі рангу n над R з природнім базисом над полем R. Також доводиться, що Лі алгебра FL може бути ізоморфно вкладена (як абстрактна Лі алгебра) в трикутну алгебру Лі $u_n(F)$, що була досліджена раніше іншими авторами.

Ключові слова і фрази: диференціювання, векторне поле, алгебра Лі, нільпотентна алгебра, область цілісності.